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Mechanical theorem proving in geometry is one of the earliest areas of auto-
mated reasoning. The first geometry theorem prover, the Geometry Machine,
was developed as early as 1959 and could prove a number of textbook theorems
through a mixture of encoded geometric knowledge, backward chaining search,
and counterexample finding [8]. However, despite this promising start and many
extensions to the work over the ensuing fifteen years or so, no significant results
could be proved. Instead numerous problems emerged due to difficulties in tack-
ling the huge space (of geometry rule applications) and the field more or less
stagnated until the seminal work of Wu Wen-tsiin in 1977.

The so-called Wu’s method [17] was an algebraic or coordinate-based ap-
proach that departed from the axiomatic or synthetic nature of previous work
and laid the foundations for modern automatic geometry theorem proving (GTP).
It single-handedly improved the power of mechanical reasoning in geometry and
led to a flurry of work on algebraic methods for GTP (e.g. using Grobner bases)
[1], which is still ongoing.

The main attraction of the algebraic GTP methods lies in their ability to
produce non-trivial geometric proofs fully automatically. However, one major
drawback rests with the long and hard to read proofs that they generate. This
makes it difficult to explain the proofs geometrically and may be viewed as
taking away the intuitive appeal usually associated with geometric reasoning.
Fortunately, over the past few years — influenced to some extent by algebraic
techniques — new coordinate-free approaches have been developed and used suc-
cessfully in automated GTP. These new methods are usually based on geometri-
cally meaningful notions such as signed areas of triangles [4], full-angles between
lines [5], or directed number systems (Clifford Algebra) [9] and can often pro-
duce short, more readable proofs through the use of geometrically-motivated
heuristics.

Viewed collectively, the extensive work done on fully automatic GTP over
the past 40 years has resulted in a mature field, which can be of benefit to areas
of geometric reasoning that do not yield to full automation but instead require
interactive theorem proving. In recent work [6], for example, we investigated the
use of the signed-area and full-angle methods within the higher-order logic of



the interactive theorem prover Isabelle (Isabelle/HOL). We formalized the ba-
sic concepts underlying these approaches and used them to produce geometric
proofs in this new setting. This work showed, for instance, that Isabelle’s generic
simplifier and natural deduction tools could be used to automate much of the ge-
ometric reasoning, while preserving geometrically intuitive and high-level steps
that enabled the fully-checked proofs to remain short. Thus, techniques from
automated GTP enabled us to get non-trivial proofs in an interactive setting
without the need to formalize from scratch theories such as those of Hilbert [10]
or Tarski [15], which some may view as more natural candidates for mechaniza-
tion in Isabelle/HOL. In fact, we should remark here that Hilbert’s ‘rigorous’
approach to geometry has itself many non-trivial formalization issues, such as
ambiguities of definitions, which we highlighted in some of our latest work in
Isabelle [13]. Moreover, mechanizing such foundational approaches means that
a large amount of work has to be done before any significant (or interesting)
geometric theorems can be mechanized. This may be considered a prohibitively
expensive effort if one wants to reason formally about the high-level properties
of geometric algorithms, for example.

Once suitable GTP techniques are formalized in an interactive theorem
prover such as Isabelle, one can then draw on the rich logical language and nu-
merous mathematical theories of the system to reason about areas that would
ordinarily fall beyond the scope of the methods. We have shown, for example,
how one may combine the signed-area and full-angle methods with nonstandard
analysis concepts to give a geometry where one can reason rigorously about
infinitesimal or vanishing quantities [6] (which arise in Newton’s Principia, for
instance) and infinite approximations of geometric objects [7]. Such proofs are
not possible using traditional GTP methods as they require deduction in so-
called degenerate situations, where reasoning usually breaks down. Moreover,
formalization in a powerful system like Isabelle enables the use of other forms
of representation and reasoning such as inductive ones (e.g. over the number of
points), which is impossible under normal circumstances.

As mentioned previously, a major issue is the lack of human readable proof
when it comes to algebraic GTP techniques. This makes these automated tech-
niques of little pedagogic use, for instance. Although the more recent coordinate-
free methods provide geometrically more intuitive proofs, the latter still tend
to be machine oriented in nature. Thus, another appeal of using an interactive
system such as Isabelle, as opposed to some ad-hoc geometry theorem prover,
lies in its support for declarative proof scripts [16]. This enables formal proofs
to be expressed in a readable language more closely related to the mathematical
vernacular used in textbooks, for instance. In situations, where one needs to un-
derstand the proofs, and not merely trust some black-box procedure, structured,
declarative proofs have an undeniable advantage.

We believe that, in an interactive theorem proving setting, the ability to com-
bine the underlying logic of the theorem prover, mathematical theories, GTP
techniques, and readable proofs provides a powerful framework for the formal-
ization of complicated arguments found in geometric algorithms. As an example,
it is possible to reason about convex hulls algorithms without much effort: this



was tackled recently in the theorem prover Coq [14] with much success. Convex
hull procedures, along with other core computational geometry algorithms, are
currently being formalized at Edinburgh too as part of formal verification work
in Isabelle/HOL. Interestingly, it should be possible to capitalise on the Isabelle
formalization of GTP methods for the verification of convex hull algorithms.
This is because a number of these procedures (e.g. the gift-wrapping algorithm)
rely on an orientation predicate (characterized axiomatically by Knuth [11], for
instance) that corresponds exactly to the signed area used in automatic GTP.
This relation to GTP was not exploited in the Coq formalization but we aim to
do so in Isabelle.

In general, reasoning about the correctness of geometric algorithms is a
hard task since much of the geometric intuition is usually lost when dealing
with actual implementations. Moreover, robustness issues such as round-off
errors due to the use of floating-point arithmetic, as well as degeneracies in
the input data, can further complicate reasoning. The importance of these
geometric algorithms, however, is increasing as they are at the heart of many
applications ranging from safety-critical ones to VLSI design to bioinformatics
(e.g. in molecular modelling of protein structures).

Of particular interest is the formalization and verification of the correct-
ness of geometric air-traffic algorithms (ATM) used for conflict detection and
resolution (CD&R) in aircraft trajectories [3]. Over the last decade or so, aero-
nautics researchers have proposed many procedures for real-time CD&R [12].
These often involve complex reasoning, especially for multiple-aircraft situa-
tions, and are difficult to prove correct. In most cases, correctness arguments
have been provided either by means of (often intricate) pen-and-paper proofs
or through computer simulations. Both of these approaches to verification are
time-consuming, potentially error-prone, and hence correctness checking would
probably benefit from mechanization. A theorem-proving approach to reason-
ing about CD&R algorithms — which places like NASA have started to use [2]
— results, once fully formalized, in a guarantee that the desired properties hold.
This is a highly desirable situation when dealing with such safety-critical prob-
lems and, moreover, may prove invaluable if the proposed shift from from the
current air-traffic control system to the new, highly automated ATM regime
known as free-flight is to happen.
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